Ball Meeting Point Calculation: Free Fall and Vertical Projection

Question:

A ball is dropped from height 100 m and another ball is projected vertically up with a velocity 50 ms-1 from the ground along the same line. Find out the position where the two balls will meet?

Solution:

First case, when the first ball is dropped

Ball meeting point calculation – Free fall and vertical position

Motion under gravity- Sign convention

Motion under gravity – sign convention

$${100-y=\frac{1}{2}gt^2}$$

$${y=100-\frac{1}{2}gt^2}$$

Let it be h1(t)

Second case: ball 2 is thrown up

$${y=ut-\frac{1}{2}gt^2}$$

$${y=ut-\frac{1}{2}(10)t^2}$$

$${y=ut-\frac{1}{2}gt^2}$$

$${y=50t-\frac{1}{2}gt^2}$$

Let it be h2(t)

To find the position where the two balls meet h1(t) =h2(t)

$${100-\frac{1}{2}gt^2=50t-\frac{1}{2}gt^2}$$

$${50t=100}$$

$$t=2 \ sec$$

Put t=2 s in h2(t)

$${h_2(t)=100-\frac {1}{2}(10)(2^2)}$$

$${h_2(t) = 80 \ m}$$

The two balls will meet at apoint 80 m from the ground.

Motion under gravity -Sign convention

En savoir plus sur eduPhysics

Subscribe to get the latest posts sent to your email.

🚀 Install PhysicsAce' App
Install PhysicsAce' App
WhatsApp Chat With Us
Return & Refund Policy | All purchases are final. Replacements for defective or incorrect items only.
Return and Refund Policy

En savoir plus sur eduPhysics

Abonnez-vous pour poursuivre la lecture et avoir accès à l’ensemble des archives.

Poursuivre la lecture

En savoir plus sur eduPhysics

Abonnez-vous pour poursuivre la lecture et avoir accès à l’ensemble des archives.

Poursuivre la lecture