Average Speed Calculation: 3/4th and 1/4th Distance

Question:

A particle covers 3/4 th of total distance with speed v1 and next 1/4 th with speed v2. Find the average speed of the particle.

Solution:

$$Average \ speed = \frac{Total \ distance}{Total \ time \ taken}$$

Total distance is $${\frac{3}{4}(d)+\frac {1}{4}(d) =d}$$

Let the speed be v1 for the 3/4 th distance and v2 for the next 1/4 th distance.

Time taken to cover 3/4 th distance with velocity v1 is $${t_1=\frac{3d}{4v_1}}$$

Time taken to cover next 1/4 th distance with velocity v2 is $${t_2 =\frac {d}{4v_2}}$$

Hence average speed is given by $${\frac{4v_1v_2}{v_1+3v_2}}$$

<img src="average-speed.jpg" alt="Image showing the average speed of a car traveling at a varying speed">
Average speed of a car traveling at varying speed

Links to this post

Average Speed Calculation: Particle’s Journey Explained

 

Average Speed Calculation: Distance, Time, and Velocity

Average Speed of a Car Traveling at Varying Speeds | Calculation & Concept

 


En savoir plus sur eduPhysics

Subscribe to get the latest posts sent to your email.

🚀 Install PhysicsAce' App
Install PhysicsAce' App
WhatsApp Chat With Us
Return & Refund Policy | All purchases are final. Replacements for defective or incorrect items only.
Return and Refund Policy

En savoir plus sur eduPhysics

Abonnez-vous pour poursuivre la lecture et avoir accès à l’ensemble des archives.

Poursuivre la lecture

En savoir plus sur eduPhysics

Abonnez-vous pour poursuivre la lecture et avoir accès à l’ensemble des archives.

Poursuivre la lecture