Votre panier est actuellement vide !
Acceleration in Pulley-Block System: Solving for Acceleration with Two Blocks of Different Masses
Question:
A pulley with two blocks of different masses are shown below.Find the acceleration in the pulley-block system.

Solution:
Acceleration in the pulley-block system:
Free body Diagram:
For 1 Kg block:
Force of gravity = m1 g = 1 g
Tension in the string = T
For 3 Kg block :
Force of gravity = m2 g = 3 g
Tension in the string = T
Applying Newton’s second law(F=ma) for the system:
$${m_1g-T=m_1a}$$
$${g-T=a}$$
This is equation (1)
$${m_2g-T=m_2a}$$
$${3g-T=3a}$$
This is equation (2)
Solving the above two equations
$${2g=4a}$$
$${a=\frac{g}{2}}$$
$${a=\frac{9.8}{2}}$$
$${a=4.9 \ \frac{m}{s^2}}$$
Aliter:
$${Acceleration=\frac{Net \ force}{Net \ mass}}$$
$${Acceleration=\frac{(3g-g)}{4}}$$
$${Acceleration =\frac{2g}{4}}$$
$${Acceleration =\frac{g}{2}}$$
$${a=\frac{9.8}{2}}$$
$${a=4.9 \ \frac{m}{s^2}}$$
Conclusion:
The acceleration in the pulley-block sytem is 4.9 ms-2 .
En savoir plus sur eduPhysics
Subscribe to get the latest posts sent to your email.
Laisser un commentaireAnnuler la réponse.