Acceleration in Pulley-Block System: Solving for Acceleration with Two Blocks of Different Masses

Question:

A pulley with two blocks of different masses are shown below.Find the acceleration in the pulley-block system.

Pulley-Block system

Solution:

Acceleration in the pulley-block system:

Pulley-block system

Free body Diagram:

Pulley-block system

For 1 Kg block:

Force of gravity = m1 g = 1 g

Tension in the string = T

For 3 Kg block :

Force of gravity = m2 g = 3 g

Tension in the string = T

Applying Newton’s second law(F=ma) for the system:

$${m_1g-T=m_1a}$$

$${g-T=a}$$

This is equation (1)

$${m_2g-T=m_2a}$$

$${3g-T=3a}$$

This is equation (2)

Solving the above two equations

$${2g=4a}$$

$${a=\frac{g}{2}}$$

$${a=\frac{9.8}{2}}$$

$${a=4.9 \ \frac{m}{s^2}}$$

Aliter:

$${Acceleration=\frac{Net \ force}{Net \ mass}}$$

$${Acceleration=\frac{(3g-g)}{4}}$$

$${Acceleration =\frac{2g}{4}}$$

$${Acceleration =\frac{g}{2}}$$

$${a=\frac{9.8}{2}}$$

$${a=4.9 \ \frac{m}{s^2}}$$

Conclusion:

The acceleration in the pulley-block sytem is 4.9 ms-2 .


En savoir plus sur eduPhysics

Subscribe to get the latest posts sent to your email.

🚀 Install PhysicsAce' App
Chat With Us
Return & Refund Policy | All purchases are final. Replacements for defective or incorrect items only.
Return and Refund Policy

En savoir plus sur eduPhysics

Abonnez-vous pour poursuivre la lecture et avoir accès à l’ensemble des archives.

Poursuivre la lecture

En savoir plus sur eduPhysics

Abonnez-vous pour poursuivre la lecture et avoir accès à l’ensemble des archives.

Poursuivre la lecture

Quitter la version mobile